Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity
نویسندگان
چکیده
A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth’s orbital parameters and atmospheric concentration of major greenhouse gases. The climate and icesheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH) ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.
منابع مشابه
Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) pe...
متن کاملNumerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle
A 3-dimensional thermo-mechanical ice-sheet model is used to simulate the evolution of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. The ice-sheet model is forced by the results from six different atmospheric general circulation models (AGCMs). The climate evolution over the period under study is reconstructed using two climate equilibrium simulations performed...
متن کاملClimatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle
The ice sheet-climate interaction as well as the climatic response to orbital parameters and atmospheric CO 2 content are examined in order to drive an ice sheet model throughout an ice age cycle. Feedback processes between ice sheet and atmosphere are analyzed by numerical experiments using a high resolution General Circulation 5 Model (GCM) under different conditions at the Last Glacial Maxim...
متن کاملLarge-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model
[1] Heinrich events, related to large-scale surges of the Laurentide ice sheet, represent one of the most dramatic types of abrupt climate change occurring during the last glacial. Here, using a coupled atmosphere-ocean-biosphereice sheet model, we simulate quasi-periodic large-scale surges from the Laurentide ice sheet. The average time between simulated events is about 7,000 yrs, while the su...
متن کاملSimulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization
In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010